Announcements

1) HW 2 up on Canvas: 4 webwork questions, pdf under "Assignments" Webwork due Friday, rest due Tuesday next week.
2) Ford Day tomorrow! Presentation $12: 15$ Kochoff
$\frac{\text { Linear Equations }}{(\text { Section } 2.3)}$

Recall definition
A differential equation of the form

$$
\frac{a_{1}(x) \frac{d y}{d x}+a_{2}(x) y=a_{3}(x)}{\left(1^{s t} \text { order }\right)}
$$

Motivating Example.

$$
\cos (x) y+\frac{d y}{d x} \sin (x)=x \ln (x)
$$

not a separable equation
We can integrate $x \ln (x)$ using integration by parts. What about the left-hand side?

The left hand side is actually the derivative of a product:

$$
\begin{aligned}
& \frac{d}{d x}(y \sin (x)) \\
= & \underbrace{\frac{d y}{d x} \sin (x)+y \cos (x)}_{\text {product rule }}
\end{aligned}
$$

Integrate both sides with respect to x :

$$
\begin{aligned}
& \int x \ln (x) d x \\
= & \int\left(\frac{d y}{d x} \sin (x)+y \cos (x)\right) d x \\
= & \int \frac{d}{d x}(y \sin (x)) d x \\
= & y \sin (x)+C
\end{aligned}
$$

Integrate $x \ln (x)$ by parts:

$$
\begin{aligned}
& u=\ln (x) \quad v=\frac{x^{2}}{2} \\
& d v=\frac{1}{x} d x \quad d v=x d x \\
& \int u d v=u v-\int v d u \\
& =\frac{x^{2}}{2} \ln (x)-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x \\
& =\frac{x^{2}}{2} \ln (x)-\frac{x^{2}}{4}
\end{aligned}
$$

Equating the two sides,

$$
\begin{aligned}
& \frac{x^{2}}{2} \ln (x)-\frac{x^{2}}{4}= \\
& y \sin (x)+C, \text { so } \\
& y=\frac{x^{2}}{\frac{2}{\ln }(x)-\frac{x^{2}}{4}-C} \\
& \sin (x)
\end{aligned}
$$

Example 2: Solve

$$
\frac{d y}{d x}-y-e^{3 x}=0
$$

Rewrite as

$$
\frac{d y}{d x}-y=e^{3 x}
$$

we can integrate $e^{3 x}$.
Is $\frac{d y}{d x}-y$ the derivative of a product?
$\frac{d y}{d x}-y$ is not the derivative of $a(x) y$ because then $a(x)=1$ and $a^{\prime}(x)=-1$ by the chain rule, this is impossible. We want to make $\frac{d y}{d x}-y$ into the derivative of a product!

Use an Integrating Factor:
Multiply
$\frac{d y}{d x}-y$ by $a(x)$
such that

$$
\begin{aligned}
& a(x) \frac{d y}{d x}-a(x) y \\
& =\frac{d}{d x}(a(x) y)
\end{aligned}
$$

Can choose $a(x)=e^{-x}$.

$$
\begin{aligned}
& \text { If } a(x)=e^{-x}, \\
& \frac{d}{d x}\left(e^{-x} y\right) \\
= & e^{-x} \frac{d y}{d x}+y\left(-e^{-x}\right) \\
= & e^{-x} \frac{d y}{d x}-e^{-x} y \\
= & a(x) \frac{d y}{d x}-a(x) y
\end{aligned}
$$

Multiply both sides of the equation by e^{-x} :

$$
\begin{aligned}
e^{-x} \frac{d y}{d x}-e^{-x} y & =e^{-x} e^{3 x} \\
& =e^{2 x}
\end{aligned}
$$

Integrate both sides with respect to X.

$$
\begin{aligned}
& \int\left(e^{-x} \frac{d y}{d x}-e^{-x} y\right) d x \\
= & \int \frac{d}{d x}\left(e^{-x} y\right) d x \\
= & e^{-x} y+C
\end{aligned}
$$

and

$$
\begin{aligned}
& \int e^{2 x} d x=\frac{e^{2 x}}{2} \text {. Then } \\
& e^{-x} y+c=\frac{e^{2 x}}{2} .
\end{aligned}
$$

Solving for y,

$$
\begin{aligned}
y & =\frac{\frac{e^{2 x}}{2}+C}{e^{-x}} \\
& =\left(\frac{e^{2 x}}{2}+C\right) e^{x} \\
& =\frac{e^{3 x}}{2}+C e^{x}
\end{aligned}
$$

